If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+16x-2250=0
a = 3; b = 16; c = -2250;
Δ = b2-4ac
Δ = 162-4·3·(-2250)
Δ = 27256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27256}=\sqrt{4*6814}=\sqrt{4}*\sqrt{6814}=2\sqrt{6814}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{6814}}{2*3}=\frac{-16-2\sqrt{6814}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{6814}}{2*3}=\frac{-16+2\sqrt{6814}}{6} $
| 25-48=4(x-1)-3 | | 25-48=(x-1)-3 | | z+z+z=30 | | z+z+z=20 | | w+w-w=15 | | 4(x+2)−5=−21 | | -9+k=-16 | | -14+n=7 | | 4p-5=21 | | 4p-4=21 | | X^4-x^2+576=0 | | v=2=-6 | | 28+12x=24+13x | | x=4=13 | | 2.59=8y+3 | | 1. 1y+8=17 | | e/4-8=-4 | | d/2-4=2 | | 2f/3=2 | | 5d/12=10 | | X²+28x-96=0 | | 8/4x+8/8x=36/12 | | 2x+3x-5+7=10x+3-6x4 | | 3−x÷2=−12 | | 200*5^2+3=x | | -50+10p=250-20p | | 5x5=-160 | | 36=9(x+5£ | | 1.14×x=145000000 | | 100-5p+20=25+5p-10 | | 100-5p+25=25+5p-10 | | 75-15p+25=50+5p-25 |